Answer:
Option D
Explanation:
Given quadratic equations is $x(x+1)+(x+1)(x+2)+.....+(x+\overline{n-1}) (x+n)=10n$
$\Rightarrow$ $( x^{2}+x^{2}+....+x^{2})+[1+3+5+...+(2n-1)]x $
$ +[1.2+2.3+...+(n-1)n]=10n$
$\Rightarrow$ $nx^{2}+n^{2}x+\frac{n(n^{2}-1)}{3}-10n=0$
$\Rightarrow$ $x^{2}+nx+\frac{n^{2}-1}{3}-10=0$
$\Rightarrow$ 3x2+3nx+n2-31=0
Let $\alpha$ and β be the roots
Since, $\alpha$ and β are consecutive
$\therefore$ | $\alpha$-β|=1
$\Rightarrow$ ( $\alpha$ -β)2=1
Again $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4\alpha\beta$
$\Rightarrow$ $1=\left(\frac{-3n}{3}\right)^{2}-4\left(\frac{n^{2}-31}{3}\right)$
$\Rightarrow$ $1= n^{2}-\frac{4}{3}(n^{2}-31)$
$\Rightarrow$ 3= $3n^{2}-4n^{2}+124$
$\Rightarrow$ n2=121
$\Rightarrow$ n=± 11
$\therefore$ n=11 [ n>0]